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Background and motivation for the new modeling framework

? The goal is to model the reaction network of a living biochemical system.

? Examples of modeling “open” reaction systems are:

? motor protein kinetic models
? and the Gillespie algorithm for simulations.

? The grand canonical model has a niche.
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The closed network model

Consider an irreducible system of monomolecular biochemical reactions
involving N reactants. The dynamics of a single molecule can be modeled as
a random walk,

dpi(t)
dt

=
N∑

j=1

j 6=i

(pj(t)qj,i − pi(t)qi,j) .

Suppose there are a total of n molecules in the closed system. Then we have
the joint probability

P (n1, n2, . . . , nN , t) =
n!

n1!n2! · · ·nN !
(p1(t))

n1 (p2(t))
n2 · · · (pN(t))nN ,

i.e. the multinomial distribution.
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The closed network model (continued...)

If the system is closed to its surroundings, it will achieve equilibrium in which
each reaction must be detailed balanced. Let πi represent the probability of
being in state i at equilibrium, then

πi

πj
=

qj,i

qi,j
= Keq

qi0,i1qi1,i2 · · · qim,i0

qi1,i0qi2,i1 · · · qi0,im

= 1.

The detailed balance condition can be broken for “open” systems by fixing
external concentrations that are typically absorbed into pseudo-first-order
transition rate constants.
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The grand canonical model

Suppose there is an observer doing work on the system by keeping the
number of molecules in state 0 equal to 1 and the number in state N + 1 equal
to 0. The total number of molecules in this system will fluctuate. The expected
number of molecules, 〈ni(t)〉, at time t in state i satisfies

d 〈ni(t)〉
dt

=
N+1∑
j=0

j 6=i

(〈nj(t)〉 qj,i − 〈ni(t)〉 qi,j)

∀i ∈ {1, 2, . . . , N}. The system is assumed to be empty initially, so the
boundary and initial conditions are

BCs: 〈n0(t)〉 = 1, 〈nN+1(t)〉 = 0

ICs: 〈ni(0)〉 = 0, ∀i ∈ {1, 2, . . . , N}.
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The grand canonical model (continued...)

The joint probability function for the open system is

P (n1, n2, . . . , nN , t) =
N∏

i=1

[
〈ni(t)〉ni

ni!
e−〈ni(t)〉

]

which means that the number of molecules in each state is independent and
these random variables each have Poisson distributions.
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Variances and correlations

Let 〈ni〉∗ be the number of molecules in state i when the system is in NESS
and ∆ni , ni − 〈ni〉∗. It can be shown that the variances and covariances
must satisfy

d
〈
(∆ni(t))2

〉
dt

=
N+1∑
j=0

j 6=i

[(〈nj(t)〉 + 2 〈∆ni(t)∆nj(t)〉) qj,i

+
(
〈ni(t)〉 − 2

〈
(∆ni(t))2

〉)
qi,j

]
d 〈∆ni(t)∆nj(t)〉

dt
=

N+1∑
k=0
k 6=i

(〈∆nj(t)∆nk(t)〉 qk,i − 〈∆ni(t)∆nj(t)〉 qi,k)

+
N+1∑
k=0
k 6=j

(〈∆ni(t)∆nk(t)〉 qk,j − 〈∆ni(t)∆nj(t)〉 qj,k)

− 〈ni(t)〉 qi,j − 〈nj(t)〉 qj,i.
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Variances and correlations (continued...)

The nonhomogeneous system of ODEs of the means can be rewritten as a
homogeneous system of ordinary differential equations by substituting
ni(t) = ∆ni(t) + 〈ni〉∗. In matrix form, the resulting system is written as

d 〈∆n(t)〉
dt

= Q 〈∆n(t)〉 .

Using the solution of this system, the autocorrelation and cross-correlation
functions of the number of molecules in each state can be shown to be

〈∆ni(t)∆ni(0)〉 =eQt
i,i 〈ni〉∗ =

N∑
k=1

(
Vi,ke

λktV−1
k,i 〈ni〉∗

)

〈∆nj(t)∆ni(0)〉 =eQt
j,i 〈ni〉∗ =

N∑
k=1

(
Vj,ke

λktV−1
k,i 〈ni〉∗

)
.
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Variances and correlations (continued...)

The NESS flux of a reaction is related to the cross-correlation functions by

lim
t→0

〈∆nj(t)∆ni(0)〉 − 〈∆ni(t)∆nj(0)〉
t

= lim
t→0

∑N
k=1

(
Vj,ke

λktV−1
k,i 〈ni〉∗ − Vi,ke

λktV−1
k,j 〈nj〉∗

)
t

=
N∑

k=1

(
Vj,kλkV−1

k,i 〈ni〉∗ − Vi,kλkV−1
k,j 〈nj〉∗

)
= Qj,i 〈ni〉∗ − Qi,j 〈nj〉∗

= qi,j 〈ni〉∗ − qj,i 〈nj〉∗ .

Furthermore, the one-way NESS fluxes can be calculated from the initial
slopes of the individual cross-correlation functions.
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Thermodynamics and reaction conductances

For the forward equation

d 〈ni(t)〉
dt

=
N+1∑
j=0

j 6=i

(〈nj(t)〉 qj,i − 〈ni(t)〉 qi,j) ,

an associated backward equation exists. It can be written as

dui(t)
dt

=
N+1∑
j=0

j 6=i

[(uj(t) − ui(t)) qi,j] ∀i ∈ {1, 2, . . . , N}

BCs: u0(t) = 1, uN+1(t) = 0

ICs: ui(0) = 0, ∀i ∈ {1, 2, . . . , N}

where
ui(t) = 〈ni(t)〉

π0

πi
.
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Thermodynamics and reaction conductances (continued...)

The substitution allows for a physically meaningful potential function to be
defined as

µi(t) , lnui(t) = ln 〈ni(t)〉 − lnπi + lnπ0.

and the chemical potential difference for a reaction between states i and j is

∆µi,j(t) = µi(t) − µj(t) = ln
〈ni(t)〉 qi,j

〈nj(t)〉 qj,i
= ln

Ji,j(t)
Jj,i(t)

.

It follows that

(Ji,j(t) − Jj,i(t))∆µi,j(t) = (Ji,j(t) − Jj,i(t)) ln
Ji,j(t)
Jj,i(t)

≥ 0,

which is equivalent to the second law of thermodynamics.
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Thermodynamics and reaction conductances (continued...)

In terms of the chemical affinity, u(t) = eµ(t), we have

∆ui,j(t) = ui(t) − uj(t) =
〈ni(t)〉π0

πi
− 〈nj(t)〉π0

πj
=

Ji,j(t) − Jj,i(t)
πiqi,j

π0

in which case

(Ji,j(t) − Jj,i(t))∆ui,j(t) =
(Ji,j(t) − Jj,i(t))

2

πiqi,j
π0 ≥ 0. (1)

This result bears a likeness to the linear Ohm’s Law of electrical circuit theory.
Considering this, a reaction conductance can be defined as

ci,j ,
Ji,j(t) − Jj,i(t)

∆ui,j(t)
=

πiqi,j

π0
= cj,i.
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Thermodynamics and reaction conductances (continued...)

The system

dui(t)
dt

=
N+1∑
j=0

j 6=i

[(uj(t) − ui(t)) qi,j] ∀i ∈ {1, 2, . . . , N}

BCs: u0(t) = 1, uN+1(t) = 0

ICs: ui(0) = 0, ∀i ∈ {1, 2, . . . , N}

is equivalent to a random walk, where ui(t) is the expected number of times a
walk, starting at state i at time t = 0, reaches state 0 before reaching state
N + 1 and does so before time t has passed.

Furthermore, when this system is in NESS, it is equivalent to an absorbing
Markov chain, describing the expected number of times a random walk,
starting at state i, reaches state 0 before reaching state N + 1.
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Conclusions and future work

? The grand canonical models provide a full understanding of linear networks.

? Possibly useful experimental methods can be suggested.

? Currently we are studying the probability generating function and moment
generating function approaches.

? Further work needs to be done to generalize these methods to biochemical
systems with bimolecular reactions.
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